Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism.

Identifieur interne : 000165 ( Main/Exploration ); précédent : 000164; suivant : 000166

Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism.

Auteurs : Diana C. Odermatt [Suisse] ; Wei Ting C. Lee [États-Unis] ; Sebastian Wild [Suisse] ; Stanislaw K. Jozwiakowski [Suisse] ; Eli Rothenberg [États-Unis] ; Kerstin Gari [Suisse]

Source :

RBID : pubmed:32542039

Descripteurs français

English descriptors

Abstract

FANCJ/BRIP1 is an iron-sulfur (FeS) cluster-binding DNA helicase involved in DNA inter-strand cross-link (ICL) repair and G-quadruplex (G4) metabolism. Mutations in FANCJ are associated with Fanconi anemia and an increased risk for developing breast and ovarian cancer. Several cancer-associated mutations are located in the FeS domain of FANCJ, but how they affect FeS cluster binding and/or FANCJ activity has remained mostly unclear. Here we show that the FeS cluster is indispensable for FANCJ's ability to unwind DNA substrates in vitro and to provide cellular resistance to agents that induce ICLs. Moreover, we find that FANCJ requires an intact FeS cluster for its ability to unfold G4 structures on the DNA template in a primer extension assay with the lagging-strand DNA polymerase delta. Surprisingly, however, FANCJ variants that are unable to bind an FeS cluster and to unwind DNA in vitro can partially suppress the formation of replisome-associated G4 structures that we observe in a FANCJ knock-out cell line. This may suggest a partially retained cellular activity of FANCJ variants with alterations in the FeS domain. On the other hand, FANCJ knock-out cells expressing FeS cluster-deficient variants display a similar-enhanced-sensitivity towards pyridostatin (PDS) and CX-5461, two agents that stabilise G4 structures, as FANCJ knock-out cells. Mutations in FANCJ that abolish FeS cluster binding may hence be predictive of an increased cellular sensitivity towards G4-stabilising agents.

DOI: 10.1371/journal.pgen.1008740
PubMed: 32542039
PubMed Central: PMC7316351


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism.</title>
<author>
<name sortKey="Odermatt, Diana C" sort="Odermatt, Diana C" uniqKey="Odermatt D" first="Diana C" last="Odermatt">Diana C. Odermatt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Wei Ting C" sort="Lee, Wei Ting C" uniqKey="Lee W" first="Wei Ting C" last="Lee">Wei Ting C. Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wild, Sebastian" sort="Wild, Sebastian" uniqKey="Wild S" first="Sebastian" last="Wild">Sebastian Wild</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jozwiakowski, Stanislaw K" sort="Jozwiakowski, Stanislaw K" uniqKey="Jozwiakowski S" first="Stanislaw K" last="Jozwiakowski">Stanislaw K. Jozwiakowski</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothenberg, Eli" sort="Rothenberg, Eli" uniqKey="Rothenberg E" first="Eli" last="Rothenberg">Eli Rothenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gari, Kerstin" sort="Gari, Kerstin" uniqKey="Gari K" first="Kerstin" last="Gari">Kerstin Gari</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32542039</idno>
<idno type="pmid">32542039</idno>
<idno type="doi">10.1371/journal.pgen.1008740</idno>
<idno type="pmc">PMC7316351</idno>
<idno type="wicri:Area/Main/Corpus">000079</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000079</idno>
<idno type="wicri:Area/Main/Curation">000079</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000079</idno>
<idno type="wicri:Area/Main/Exploration">000079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism.</title>
<author>
<name sortKey="Odermatt, Diana C" sort="Odermatt, Diana C" uniqKey="Odermatt D" first="Diana C" last="Odermatt">Diana C. Odermatt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Wei Ting C" sort="Lee, Wei Ting C" uniqKey="Lee W" first="Wei Ting C" last="Lee">Wei Ting C. Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wild, Sebastian" sort="Wild, Sebastian" uniqKey="Wild S" first="Sebastian" last="Wild">Sebastian Wild</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jozwiakowski, Stanislaw K" sort="Jozwiakowski, Stanislaw K" uniqKey="Jozwiakowski S" first="Stanislaw K" last="Jozwiakowski">Stanislaw K. Jozwiakowski</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothenberg, Eli" sort="Rothenberg, Eli" uniqKey="Rothenberg E" first="Eli" last="Rothenberg">Eli Rothenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gari, Kerstin" sort="Gari, Kerstin" uniqKey="Gari K" first="Kerstin" last="Gari">Kerstin Gari</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Molecular Cancer Research, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Fanconi Anemia Complementation Group Proteins (chemistry)</term>
<term>Fanconi Anemia Complementation Group Proteins (genetics)</term>
<term>Fanconi Anemia Complementation Group Proteins (metabolism)</term>
<term>G-Quadruplexes (MeSH)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>RNA Helicases (chemistry)</term>
<term>RNA Helicases (genetics)</term>
<term>RNA Helicases (metabolism)</term>
<term>Sf9 Cells (MeSH)</term>
<term>Spodoptera (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Cellules Sf9 (MeSH)</term>
<term>G-quadruplexes (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protéines des groupes de complémentation de l'anémie de Fanconi (composition chimique)</term>
<term>Protéines des groupes de complémentation de l'anémie de Fanconi (génétique)</term>
<term>Protéines des groupes de complémentation de l'anémie de Fanconi (métabolisme)</term>
<term>RNA helicases (composition chimique)</term>
<term>RNA helicases (génétique)</term>
<term>RNA helicases (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spodoptera (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fanconi Anemia Complementation Group Proteins</term>
<term>RNA Helicases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fanconi Anemia Complementation Group Proteins</term>
<term>RNA Helicases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fanconi Anemia Complementation Group Proteins</term>
<term>RNA Helicases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines des groupes de complémentation de l'anémie de Fanconi</term>
<term>RNA helicases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines des groupes de complémentation de l'anémie de Fanconi</term>
<term>RNA helicases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines des groupes de complémentation de l'anémie de Fanconi</term>
<term>RNA helicases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>G-Quadruplexes</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Sf9 Cells</term>
<term>Spodoptera</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cellules Sf9</term>
<term>G-quadruplexes</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>Sites de fixation</term>
<term>Spodoptera</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">FANCJ/BRIP1 is an iron-sulfur (FeS) cluster-binding DNA helicase involved in DNA inter-strand cross-link (ICL) repair and G-quadruplex (G4) metabolism. Mutations in FANCJ are associated with Fanconi anemia and an increased risk for developing breast and ovarian cancer. Several cancer-associated mutations are located in the FeS domain of FANCJ, but how they affect FeS cluster binding and/or FANCJ activity has remained mostly unclear. Here we show that the FeS cluster is indispensable for FANCJ's ability to unwind DNA substrates in vitro and to provide cellular resistance to agents that induce ICLs. Moreover, we find that FANCJ requires an intact FeS cluster for its ability to unfold G4 structures on the DNA template in a primer extension assay with the lagging-strand DNA polymerase delta. Surprisingly, however, FANCJ variants that are unable to bind an FeS cluster and to unwind DNA in vitro can partially suppress the formation of replisome-associated G4 structures that we observe in a FANCJ knock-out cell line. This may suggest a partially retained cellular activity of FANCJ variants with alterations in the FeS domain. On the other hand, FANCJ knock-out cells expressing FeS cluster-deficient variants display a similar-enhanced-sensitivity towards pyridostatin (PDS) and CX-5461, two agents that stabilise G4 structures, as FANCJ knock-out cells. Mutations in FANCJ that abolish FeS cluster binding may hence be predictive of an increased cellular sensitivity towards G4-stabilising agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32542039</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008740</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1008740</ELocationID>
<Abstract>
<AbstractText>FANCJ/BRIP1 is an iron-sulfur (FeS) cluster-binding DNA helicase involved in DNA inter-strand cross-link (ICL) repair and G-quadruplex (G4) metabolism. Mutations in FANCJ are associated with Fanconi anemia and an increased risk for developing breast and ovarian cancer. Several cancer-associated mutations are located in the FeS domain of FANCJ, but how they affect FeS cluster binding and/or FANCJ activity has remained mostly unclear. Here we show that the FeS cluster is indispensable for FANCJ's ability to unwind DNA substrates in vitro and to provide cellular resistance to agents that induce ICLs. Moreover, we find that FANCJ requires an intact FeS cluster for its ability to unfold G4 structures on the DNA template in a primer extension assay with the lagging-strand DNA polymerase delta. Surprisingly, however, FANCJ variants that are unable to bind an FeS cluster and to unwind DNA in vitro can partially suppress the formation of replisome-associated G4 structures that we observe in a FANCJ knock-out cell line. This may suggest a partially retained cellular activity of FANCJ variants with alterations in the FeS domain. On the other hand, FANCJ knock-out cells expressing FeS cluster-deficient variants display a similar-enhanced-sensitivity towards pyridostatin (PDS) and CX-5461, two agents that stabilise G4 structures, as FANCJ knock-out cells. Mutations in FANCJ that abolish FeS cluster binding may hence be predictive of an increased cellular sensitivity towards G4-stabilising agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Odermatt</LastName>
<ForeName>Diana C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Wei Ting C</ForeName>
<Initials>WTC</Initials>
<Identifier Source="ORCID">0000-0002-8842-6510</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wild</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jozwiakowski</LastName>
<ForeName>Stanislaw K</ForeName>
<Initials>SK</Initials>
<Identifier Source="ORCID">0000-0002-0553-3530</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rothenberg</LastName>
<ForeName>Eli</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gari</LastName>
<ForeName>Kerstin</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0003-1276-8941</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM108119</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM134947</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051856">Fanconi Anemia Complementation Group Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="C000618935">BRIP1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D020365">RNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051856" MajorTopicYN="N">Fanconi Anemia Complementation Group Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054856" MajorTopicYN="Y">G-Quadruplexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020365" MajorTopicYN="N">RNA Helicases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061987" MajorTopicYN="N">Sf9 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018411" MajorTopicYN="N">Spodoptera</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32542039</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1008740</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-19-01808</ArticleId>
<ArticleId IdType="pmc">PMC7316351</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2016 Jun;17(6):337-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27145721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jul;10(7):653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jan 10;10(1):119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30631072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2005 Sep;8(3):255-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2010 Nov 11;116(19):3780-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Dec 22;126(50):16405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15600342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 30;133(5):801-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2018 Mar;18(3):168-185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29376519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Sep;37(9):931-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1635-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Feb 12;37(3):438-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 19;9(3):e92444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24647355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Jun 16;181(6):893-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18541701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 30;133(5):789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2011 Feb 15;71(4):1418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Apr 16;14(4):e1007355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29659569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25450-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Jun 24;6(6):e149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18578568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2017 May;18(5):279-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28225080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 11;26(13):3238-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 26;283(52):36132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Sep 15;23(6):801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2013 Jan;34(1):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23033317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Feb 15;39(6):1462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10684628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Jun;28(12):4116-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Apr 17;581(8):1657-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17399710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Apr 1;201(1):33-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23530069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Nov 26;130(47):15758-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18975896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Sep;37(9):953-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci Alliance. 2019 Jul 5;2(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31278166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Jul 3;135(26):9640-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Apr 6;105(1):149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4053-4060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32041867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Feb;40(4):1485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22021381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Oct 1;110(7):2390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 22;6:30819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27545293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci Alliance. 2020 Feb 18;3(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32071282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 10;9(10):e109752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25303670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Nov 3;33(21):2521-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25193968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 17;8:14432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28211448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(22):6673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Apr;8(4):279-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21451515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Feb 4;61(3):449-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res Treat. 2016 Jul;48(3):955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26790966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Aug;31(4):405-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Sep;37(9):934-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
<li>États-Unis</li>
</country>
<region>
<li>Canton de Zurich</li>
<li>État de New York</li>
</region>
<settlement>
<li>Zurich</li>
</settlement>
<orgName>
<li>Université de Zurich</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Odermatt, Diana C" sort="Odermatt, Diana C" uniqKey="Odermatt D" first="Diana C" last="Odermatt">Diana C. Odermatt</name>
</region>
<name sortKey="Gari, Kerstin" sort="Gari, Kerstin" uniqKey="Gari K" first="Kerstin" last="Gari">Kerstin Gari</name>
<name sortKey="Jozwiakowski, Stanislaw K" sort="Jozwiakowski, Stanislaw K" uniqKey="Jozwiakowski S" first="Stanislaw K" last="Jozwiakowski">Stanislaw K. Jozwiakowski</name>
<name sortKey="Wild, Sebastian" sort="Wild, Sebastian" uniqKey="Wild S" first="Sebastian" last="Wild">Sebastian Wild</name>
</country>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Lee, Wei Ting C" sort="Lee, Wei Ting C" uniqKey="Lee W" first="Wei Ting C" last="Lee">Wei Ting C. Lee</name>
</region>
<name sortKey="Rothenberg, Eli" sort="Rothenberg, Eli" uniqKey="Rothenberg E" first="Eli" last="Rothenberg">Eli Rothenberg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32542039
   |texte=   Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32542039" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020